Estimating the Market Share Attraction Model using Support Vector Regressions
نویسندگان
چکیده
We propose to estimate the parameters of the Market Share Attraction Model (Cooper & Nakanishi, 1988; Fok & Franses, 2004) in a novel way by using a nonparametric technique for function estimation called Support Vector Regressions (SVR) (Vapnik, 1995; Smola, 1996). Traditionally, the parameters of the Market Share Attraction Model are estimated via a Maximum Likelihood (ML) procedure, assuming that the data are drawn from a conditional Gaussian distribution. However, if the distribution is unknown, ML estimation may seriously fail (Vapnik, 1982). One way to tackle this problem is to introduce a linear loss function over the errors and a penalty on the magnitude of model coefficients. This leads to qualities such as robustness to outliers and avoidance of the problem of overfitting. This kind of estimation forms the basis of the SVR technique, which, as we will argue, makes it a good candidate for solving the Market Share Attraction Model. We test the SVR approach to predict (the evolution of) the market shares of 36 car brands simultaneously and report stronger results than when using a ML estimation procedure.
منابع مشابه
Prediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron
Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization a...
متن کاملForecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملInvestigating Cointegration and the Causal Relationship Between of Exchange Rate, Oil Price and Gas Price in Regional Markets
Short-term and long-term relationship between exchange rate, oil price and spot gas price of three regional gas markets was investigated using and estimating the Vector Autoregressive model. There is a significant and long-term relationship between variables.Short-term interactions of variables with Granger causality test One-year interaction of variables with intervals of one to twelve months ...
متن کاملA HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE
Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the S...
متن کاملدرآمدی بر اشتغال در بخشهای عمده استان تهران براساس داده- ستانده بخشی
This paper has been done in order to recognize and review the existing job market, to analyze obvious and hidden aspects of unemployment, and to develop employment field in Tehran province. First, by using statistical information and determining economic parts ratio of job market and work force’s divisional transition, the quantity and additive parts of work force for all towns of Tehran provin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007